AI & ML for Managers - Flat 70% OFF   Offer ends in

Project - Bike Rental Forecasting

49 / 49

End to End Project - Bikes Assessment - Evaluate the model on test

Evaluate the model on test dataset

Task 1: Extract the relevant data from test_set and store it in X_test

Hint

        X_test = test_set.loc[:,['xformHr', 'temp','weekday']]

Task 2: Extract the relevant data from test_set and store it in y_test

Hint

         y_test = test_set.loc[:,'cnt']

Task 3: Calculate the predicted values from the model and store it in 'predictedCounts_test'

Hint

        test_set.loc[:,'predictedCounts_test'] = final_model.predict(X_test)

Task 4: Calculate the mean squared error using mean_squared_error function.

Hint

        final_mse = mean_squared_error(y_test, test_set.loc[:,'predictedCounts_test'])