Showing results for ;
  • Topic
    12 Concepts | 7 Questions | 11 Assessments | 1,664 Learners

    Welcome to this project on Classify Clothes from Fashion MNIST Dataset with a couple of Machine Learning algorithms like SGD Classifier, XGBClassifier, Softmax Regression (multi-class LogisticRegression), DecisionTreeClassifier, RandomForestClassifier, Ensemble (with soft voting) using scikit-learn. In this project, you will use Python and scikit-learn to build Machine Learning models, and apply them to predict the class of clothes from Fashion MNIST Dataset.

    In this end-to-end Machine Learning project, you will get a hands-on overview of how to methodologically solve a machine learning classification problem. As a part of it, you will understand various methods of improvising the models using hyperparameter tuning …

    Instructor: Sandeep Giri
  • Welcome to the project on Building a Neural Network for Image Classification with TensorFlow. In this project, we would learn how to develop a neural network classifier from very scratch, using TensorFlow 2.

    We would build and train a dense neural network on the Fashion MNIST dataset and evaluate its performance with some test samples. This project aims to impart the knowledge of the basic steps involved in building a neural network, working with TensorFlow 2, training a neural network, and make the learner comfortable with the cutting-edge technology - TensorFlow 2.

    Skills you will develop:

    1. TensorFlow 2
    2. Matplotlib …
    Instructor: Cloudxlab
  • P

    1 Concept | 7 Assessments | 238 Learners

    Welcome to the project on Training from Scratch vs Transfer Learning. In this exercise, we will understand how to train a neural network from scratch to classify data using TensorFlow 2. We would also learn how to use the weights of an already trained model to achieve classification to another set of data.

    We will train a neural network (say model A) on data related to 6 of the classes, and we will train another neural network (say model B) on the remaining 2 classes. Then, we would use the pre-trained weights of model A and tune the last layer …

    Instructor: Cloudxlab