Enrollments closing soon for Post Graduate Certificate Program in Applied Data Science & AI By IIT Roorkee | 3 Seats Left
Apply NowLogin using Social Account
     Continue with GoogleLogin using your credentials
Let us now define the style loss and content loss for the input image. We would be using the style_targets and content_targets to do this.
To do this, we shall define a function style_content_loss and implement the following steps:
style_weight to obtain the style_loss.content_weight to obtain the content_loss.style_loss and content_loss to obtain the total loss loss.Note:
tf.reduce_mean computes the mean of elements across dimensions of a tensor.
tf.add_n adds all input tensors element-wise.
Use the following code:
num_content_layers = len(content_layers)
num_style_layers = len(style_layers)
def style_content_loss(outputs):
style_outputs = outputs['style']
content_outputs = outputs['content']
style_loss = tf.add_n([tf.reduce_mean(
(style_outputs[name] - style_targets[name])**2)
for name in style_outputs.keys()] )
style_loss *= style_weight / num_style_layers
content_loss = tf.add_n([tf.reduce_mean(
(content_outputs[name]-content_targets[name])**2)
for name in content_outputs.keys()])
content_loss *= content_weight / num_content_layers
loss = style_loss + content_loss
return loss
Taking you to the next exercise in seconds...
Want to create exercises like this yourself? Click here.
Loading comments...