Login using Social Account
     Continue with GoogleLogin using your credentials
Objective
Fashion-MNIST is a dataset of Zalando's article images —consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label.
The objective of the project is - to use Fashion-MNIST data set to identify (predict) different fashion products(articles) from the given images using Machine Learning.
We will be following the below steps to solve this problem:
Importing the libraries
Loading the data
Splitting the data
Visualizing the Data
Building the Model
Fitting the Model
Evaluating the Model Performance
Acknowledgements
Cloudxlab is using this “Fashion MNIST” problem for its machine learning learners for learning and practicing. Fashion-MNIST dataset is a collection of fashion article's images provided by Zalando . We thank Zalando Research for hosting the dataset.
What are we going to do?
We will train a neural network (say model A) on data related to 6 of the classes, and we will train another neural network (say model B) on the remaining 2 classes. Then, we would use the pre-trained weights of model A and tune the last layer so as to classify these 2 classes(this technique is called Transfer Learning), and compare the results of classification obtained using normal training and transfer learning. In this project, we would practically appreciate the use of Transfer Learning.
Taking you to the next exercise in seconds...
Want to create exercises like this yourself? Click here.
No hints are availble for this assesment
Answer is not availble for this assesment
Loading comments...