Welcome to this project on Getting Started with Matplotlib. In this project, you will understand how to use Matplotlib, one of the most famous visualizing libraries in Python.
Data visualization is one of the most prominent ways of analyzing the data. It presents visually appealing ways to detect the patterns, noise, outliers, and many other insights, which would assist the data scientists to understand, transform, and refine the data to build better comprehensive models. This project would help you build data visualization skills on top of your existing Python programming skills. You will understand how to use Matplotlib to depict …
Welcome to this project on Getting Started with Matplotlib. In this project, you will understand how to use Matplotlib, one of the most famous visualizing libraries in Python.
Data visualization is one of the most prominent ways of analyzing the data. It presents visually appealing ways to detect the patterns, noise, outliers, and many other insights, which would assist the data scientists to understand, transform, and refine the data to build better comprehensive models. This project would help you build data visualization skills on top of your existing Python programming skills. You will understand how to use Matplotlib to depict …
Welcome to this project on Getting Started with Matplotlib. In this project, you will understand how to use Matplotlib, one of the most famous visualizing libraries in Python.
Data visualization is one of the most prominent ways of analyzing the data. It presents visually appealing ways to detect the patterns, noise, outliers, and many other insights, which would assist the data scientists to understand, transform, and refine the data to build better comprehensive models. This project would help you build data visualization skills on top of your existing Python programming skills. You will understand how to use Matplotlib to depict …
This is an end-to-end Machine Learning project. You would start by learning how to load a dataset, visualize it, fill in the missing values, create pipelines, handle categorical variables, train models based on that data, and finally predict using that model.
This will not only help you understand how to train a machine learning model, but will also give you a detailed idea of how to clean and prepare data for machine learning, train the model, and fine tune it in real life projects.
Skills you will develop:
Welcome to this project on Building a CNN Classifier using TensorFlow 2 for MNIST Fashion Dataset. In this project, we will understand how to use the TensorFlow 2 platform to build a simple classifier using Convolutional Neural Networks(CNNs).
CNNs have been one of the state-of-art tools in the current era of Computer Vision. The present-day deep learning and computer vision communities find numerous applications of CNNs in classification tasks and object detection use cases. These use cases have formed the basis of many real-time applications like self-driving cars, face recognition apps, satellite photo analysis and classification, and many more …
Welcome to this project on Credit Card Fraud Detection. In this project, you will use Python, SMOTE Technique(to over-sample data), build a Logistic Regression Classifier, and apply it to detect if a transaction is fraudulent or not.
The real world datasets often might be with data of imbalanced classes. It is very important to feed a decent number of data samples of each class in a classification problem so that the classifier would detect the underlying hidden patterns for each class and prepare itself to reasonably classify the test data. Upon completing this project, you will understand the pragmatic …
Welcome to this project on NYSE Closing Price Prediction. In this project, you will use Pandas, Keras, and Python in order to build a predictive model and apply it to predict the closing prices.
Time-series modeling has a huge demand in today's numbers-filled world. It has a wide variety of applications in sales s forecasting, prediction of meteorological elements like rainfall, economic forecasting in the financial worlds, and many more.
In this exercise, we shall understand how to predict stock market closing prices for a firm using GRU, a state-of-art deep learning algorithm for sequential data. We shall focus …
Welcome to the project on Building a Neural Network for Image Classification with TensorFlow. In this project, we would learn how to develop a neural network classifier from very scratch, using TensorFlow 2.
We would build and train a dense neural network on the Fashion MNIST dataset and evaluate its performance with some test samples. This project aims to impart the knowledge of the basic steps involved in building a neural network, working with TensorFlow 2, training a neural network, and make the learner comfortable with the cutting-edge technology - TensorFlow 2.
Skills you will develop:
Welcome to this project on Image Classification with Pre-trained Keras models. This project aims to impart the knowledge of how to access the pre-trained models(here we get pre-trained ResNet model) from Keras of TensorFlow 2, and appreciate its powerful classification capacity by making the model predict the class of an input image.
Understanding the pre-trained models is very important because this forms the basis of transfer learning. one of the most appreciated techniques to perform the classification of a different task thus reducing the training time, the number of iterations, and resource consumption. Learning about the pre-trained models and …
Welcome to this project on Deploy Image Classification Pre-trained Keras model using Flask. In this project, we will have a comprehensive understanding of how to deploy a deep learning model as a web application using the Flask framework.
Developing a machine learning or deep learning model is very important to solve problems using AI. On the other hand, it is equally important to have a knowledge of how to deploy those amazing problem-solving models into such an interface which enables the users to make use of these solutions. Even many apps we use today, like YouTube, Amazon/Flipkart shopping, FaceApps …
Welcome to the project on Training from Scratch vs Transfer Learning. In this exercise, we will understand how to train a neural network from scratch to classify data using TensorFlow 2. We would also learn how to use the weights of an already trained model to achieve classification to another set of data.
We will train a neural network (say model A) on data related to 6 of the classes, and we will train another neural network (say model B) on the remaining 2 classes. Then, we would use the pre-trained weights of model A and tune the last layer …
Welcome to the project on Mask R-CNN with OpenCV for Object Detection. In this project, we will learn how to read a pre-trained TensorFlow model for object detection using OpenCV.
The real-world scenarios have a lot of applications based on object detection. For example, object detection models are used in self-driving cars to recognize where the pedestrians are, where the are vehicles located, where the signals are, etc in the given frame of view. So, it is very important to develop an understanding of how to use a pre-trained object detection model so that we could later customize it based …