The deep learning algorithms and frameworks have changed the approach to computer vision entirely. With the recent development in computer vision with Convolutional Neural Networks such as Yolo, a new era has begun. It would open doors to new industries as well as personal applications.
After the successful bootcamps held at IIT Bombay, NUS Singapore, RV College of Engineering, etc, CloudxLab in collaboration with IoTSG and Google Asia conducted a successful conference on Understanding Computer Vision with AI using Tensorflow on May 11, 2019, at Google Asia, Singapore office.
Let us say, you have trained, fine-tuned and tested Machine Learning(ML) model – sgd_clf, which was trained and tested using SGD Classifier on MNIST dataset. And now you want to deploy it in production, so that consumers of this model could use it. What are different options you have to deploy your ML model in production?
One of the classic problem that has been used in the Machine Learning world for quite sometime is the MNIST problem. The objective is to identify the digit based on image. But MNIST is not very great problem because we come up with great accuracy even if we are looking at few pixels in the image. So, another common example problem against which we test algorithms is Fashion-MNIST.
Fashion-MNIST is a dataset of Zalando’s fashion article images —consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each instance is a 28×28 grayscale image, associated with a label.
Usually, the learners from our classes schedule 1-on-1 discussions with the mentors to clarify their doubts. So, thought of sharing the video of one of these 1-on-1 discussions that one of our CloudxLab learner – Leo – had with Sandeep last week.
Below are the questions from the same discussion.
You can go through the detailed discussion which happened around these questions, in the attached video below.
What computing did to the usual industry earlier, Machine Learning is doing the same to usual rule-based computing now. It is eating the market of the same. Earlier, in organizations, there used to be separate groups for Image Processing, Audio Processing, Analytics and Predictions. Now, these groups are merged because machine learning is basically overlapping with every domain of computing. Let us discuss how machine learning is impacting e-commerce in particular.
The first use case of Machine Learning that became really popular was Amazon Recommendations. Afterwards, the Netflix launched a challenge of Movie Recommendations which gave birth to Kaggle, now an online platform of various machine learning challenges.
Before I dive deep into the details further, lets quickly brief the terms that are found often confusing. AI stands for Artificial Intelligence which means being able to display human-like intelligence. AI is basically an objective. Machine learning is making computers learn based on historical or empirical data instead of explicitly writing the rules. Artificial Neural networks are the computing constructs designed on a similar structure like the animal brain. Deep Learning is a branch of machine learning where we use a complex Artificial Neural network for predictions.
When we are solving an industry problem involving neural networks, very often we end up with bad performance. Here are some suggestions on what should be done in order to improve the performance.
Is your model underfitting or overfitting?
You must break down the input data set into two parts – training and test. The general practice is to have 80% for training and 20% for testing.
You should train your neural network with the training set and test with the testing set. This sounds like common sense but we often skip it.
Compare the performance (MSE in case of regression and accuracy/f1/recall/precision in case of classification) of your model with the training set and with the test set.
If it is performing badly for both test and training it is underfitting and if it is performing great for the training set but not test set, it is overfitting.