10 Reasons to Start Learning Data Science and Artificial Intelligence Today

The world is changing at an unprecedented pace in technology. The demand for Data Science and Artificial Intelligence (AI) skills is growing faster than ever before. Whether you’re a recent graduate, a seasoned professional, or simply looking to upskill, now is the perfect time to hone your skills in these exciting fields.

If you want to innovate or solve complex problems, you must empower yourself with the right tools and technologies today. These technologies include Machine Learning, Artificial Intelligence, Deep Learning, ChatGPT, Stable Diffusion, Data Science, Data Engineering and so much more! 

Here are ten reasons why you should consider investing in Data Science and AI/ML training today.

1. The Job Market is Booming
Data science and AI are among the fastest-growing fields, and the demand for professionals with these skills is expected to continue to rise. According to a recent study, the number of job postings for data scientists has increased by almost 75% over the past five years, and the demand for AI professionals is growing even faster.

Continue reading “10 Reasons to Start Learning Data Science and Artificial Intelligence Today”

Starting Machine Learning with an End-to-End Project

When you are learning about Machine Learning, it is best to experiment with real-world data alongside learning concepts. It is even more beneficial to start Machine Learning with a project including end-to-end model building, rather than going for conceptual knowledge first.

Benefits of Project-Based Learning

  1. You get to know about real-world projects which in a way prepares you for real-time jobs.
  2. Encourages critical thinking and problem-solving skills in learners.
  3. Gives an idea of the end-to-end process of building a project.
  4. Gives an idea of tools and technologies used in the industry.
  5. Learners get an in-depth understanding of the concepts which directly boosts their self-confidence.
  6. It is a more fun way to learn things rather than traditional methods of learning.

What is an End-to-End project?

End-to-end refers to a full process from start to finish. In an ML end-to-end project, you have to perform every task from first to last by yourself. That includes getting the data, processing it, preparing data for the model, building the model, and at last finalizing it.

Ideology to start with End to End project

It is much more beneficial to start learning Machine Learning with an end-to-end project rather than diving down deep into the vast ocean of Machine Learning concepts. But, what will be the benefit of practicing concepts without even understanding them properly? How to implement concepts when we don’t understand them properly?

There are not one but several benefits of starting your ML journey with a project. Some of them are:

Continue reading “Starting Machine Learning with an End-to-End Project”

How to Crack Machine Learning Interviews with Top Interview Questions(2024)

Machine Learning is the most rapidly growing domain in the software industry. More and more sectors are using concepts of Machine Learning to enhance their businesses. It is now not an add-on but has become a necessity for businesses to use ML algorithms for optimizing their businesses and to offer a personalised user experience.

This demand for Machine Learning in the industry has directly increased the demand for Machine Learning Engineers, the ones who unload this magic in reality. According to a survey conducted by LinkedIn, Machine Learning Engineer is the most emerging job role in the current industry with nearly 10 times growth.

But, even this high demand doesn’t make getting a job in ML any easier. ML interviews are tough regardless of your seniority level. But as said, with the right knowledge and preparation, interviews become a lot easier to crack.

In this blog, I will walk you through the interview process for an ML job role and will pass on some tips and tactics on how to crack one. We will also discuss the skills required in accordance with each round of the process.

Continue reading “How to Crack Machine Learning Interviews with Top Interview Questions(2024)”

System Design: How to Design a Rate Limiter?

What is a Rate Limiter?

Rate limiting refers to preventing the frequency of an operation from exceeding a defined limit. In large-scale systems, rate limiting is commonly used to protect underlying services and resources. In distributed systems, Rate limiting is used as a defensive mechanism to protect the availability of shared resources. It is also used to protect APIs from unintended or malicious overuse by limiting the number of requests that can reach our API in a given period of time.

In this blog, we’ll see how will tackle the question of designing a rate limiter in a system design interview.

Continue reading “System Design: How to Design a Rate Limiter?”

Offline vs Online DevOps Training

Before we understand the different ways in which offline and online training can be beneficial for learners with different needs, let us understand what is DevOps.

DevOps: An Introduction
What is DevOps?

DevOps is the amalgamation of cultural philosophies, practices, and tools that increases an organization’s ability to deliver applications and services at high velocity, understanding DevOps will help you evolve and improve products at a faster pace than organizations using traditional software development and infrastructure management processes. This speed enables organizations to serve their customers better and compete more effectively in the market.

Benefits of DevOps

Check out the DevOps Introduction By Abhinav Singh for an in-depth understanding of DevOps tools and practices.

Continue reading “Offline vs Online DevOps Training”

How to Interact with Apache Zookeeper using Python?

In the Hadoop ecosystem, Apache Zookeeper plays an important role in coordination amongst distributed resources. Apart from being an important component of Hadoop, it is also a very good concept to learn for a system design interview.

What is Apache Zookeeper?

Apache ZooKeeper is a coordination tool to let people build distributed systems easier. In very simple words, it is a central data store of key-value pairs, using which distributed systems can coordinate. Since it needs to be able to handle the load, Zookeeper itself runs on many machines.

Zookeeper provides a simple set of primitives and it is very easy to program.

It is used for:

  • synchronization
  • locking
  • maintaining configuration
  • failover management.

It does not suffer from Race Conditions and Dead Locks.

Continue reading “How to Interact with Apache Zookeeper using Python?”

Bucketing- CLUSTERED BY and CLUSTER BY

The bucketing in Hive is a data-organising technique. It is used to decompose data into more manageable parts, known as buckets, which in result, improves the performance of the queries. It is similar to partitioning, but with an added functionality of hashing technique.

Introduction

Bucketing, a.k.a clustering is a technique to decompose data into buckets. In bucketing, Hive splits the data into a fixed number of buckets, according to a hash function over some set of columns. Hive ensures that all rows that have the same hash will be stored in the same bucket. However, a single bucket may contain multiple such groups.

For example, bucketing the data in 3 buckets will look like-

Continue reading “Bucketing- CLUSTERED BY and CLUSTER BY”

Top Machine Learning Interview Questions for 2024 (Part-1)

 

These Machine Learning Interview Questions, are the real questions that are asked in the top interviews.

For hiring machine learning engineers or data scientists, the typical process has multiple rounds.

  1. A basic screening round – The objective is to check the minimum fitness in this round.
  2. Algorithm Design Round – Some companies have this round but most don’t. This involves checking the coding / algorithmic skills of the interviewee.
  3. ML Case Study – In this round, you are given a case study problem of machine learning on the lines of Kaggle. You have to solve it in an hour.
  4. Bar Raiser / Hiring Manager  – This interview is generally with the most senior person in the team or a very senior person from another team (at Amazon it is called Bar raiser round) who will check if the candidate fits in the company-wide technical capabilities. This is generally the last round.

Continue reading “Top Machine Learning Interview Questions for 2024 (Part-1)”

The Era of Software Engineering and how to become one

Today’s world is also known as the world of software with its builders known as Software Engineers. It’s on them that today we are interacting with each other because the webpage on which you are reading this blog, the web browser displaying this webpage, and the operating system to run the web browser are all made by a software engineer.

In today’s blog, we will start by introducing software engineering and will discuss its history, scope, and types. Then we will compare different types of software engineers on the basis of their demand in the industry. After that, we will discuss on full-stack developer job role and responsibilities and will also discuss key skills and the hiring process for a full-stack developer in detail.

Continue reading “The Era of Software Engineering and how to become one”

Natural Languages and AI

During one of the keynote speeches in India, an elderly person asked a question: why don’t we use Sanskrit for coding in AI. Though this question might look very strange to researchers at first it has some deep background to it.

Long back when people were trying to build language translators, the main idea was to have an intermediate language to and from which we could translate to any language. If we build direct translation from a language A to B, there will be too many permutations. Imagine, we have 10 languages, and we will have to build 90 (10*9) such translators. But to come up with an intermediate language, we would just need to encode for every 10 languages and 10 decoders to convert the intermediate language to each language. Therefore, there will be only 20 models in total.

So, it was obvious that there is definitely a need for an intermediate language. The question was what should be the intermediate language. Some scientists proposed that we should have Sanskrit as the intermediate language because it had good definitive grammar. Some scientists thought a programming language that can dynamically be loaded should be better and they designed a programming language such as Lisp. Soon enough, they all realized that both natural languages and programming languages such as Lisp would not suffice for multiple reasons: First, there may not be enough words to represent each emotion in different languages. Second, all of this will have to be coded manually.

The approach that became successful was the one in which we represent the intermediate language as a list of numbers along with a bunch of numbers that represent the context. Also, instead of manually coding the meaning of each word, the idea that worked out was representing a word or a sentence with a bunch of numbers. This approach is fairly successful. This idea of representing words as a list of numbers has brought a revolution in natural language understanding. There is humongous research that is happening in this domain today. Please check GPT-3Dall-E, and Imagen.

If you subtract woman from Queen and add Man, what should be the result? It should be King, right? This can be easily demonstrated using word embedding.

Queen — woman + man = King

Similarly, Emperor — man + woman = Empress

Yes, this works. Each of these words is represented by a list of numbers. So, we are truly able to represent the meaning of words with a bunch of numbers. If you think about it, we learned the meaning of each word in our mother tongue without using a dictionary. Instead, we figured the meaning out using the context.

In our mind, we have sort of a representation of the word which is definitely not in the form of some other natural language. Based on the same principles, the algorithms also figure out the meaning of the words in terms of a bunch of numbers. It is very interesting to understand how these algorithms work. They work on similar principles to humans. They go through the large corpus of data such as Wikipedia or news archives and figure out the numbers with which each word can be represented. The problem is optimization: come up with those numbers to represent each word such that the distance between the words existing in a similar context is very small as compared to the distance between the words existing in different contexts.

The word Cow is closer to Buffalo as compared to Cup because Cow and buffalo usually exist in similar contexts in sentences.

So, in summary, it is very unreasonable to pursue that we should still be considering a natural language to represent the meaning of a word or sentence.

I hope this makes sense to you. Please post your opinions in the comments.